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An important motivation for the design of BMIs so far has been 
their potential ability to restore lost motor function in individuals 
with neurological injury or disease (for example, because of motor 
paralysis or stroke). In such cases, the envisioned role of the BMI is 
to decode the intended movement from neural activity in the relevant 
areas of the brain and use this information to control an affected limb, 
prosthetic or other device.

The design of such BMIs has received considerable attention in recent 
years1–18. Work so far has focused principally on achieving the motor 
goal in tasks that involve single-targeted movements, such as moving 
a cursor on a display to an individual target location. These BMIs 
can decode the continuous trajectory of one- to three-dimensional  
movement (including a grasp in some studies)1–14, the intended 
target location15,16 or both the target and trajectory jointly using 
approaches such as optimal feedback control17,18. However, in many 
natural tasks—such as playing a succession of notes on a piano—the 
goal is more complex, and the motor plan for achieving it can be 
considered as a complete sequence of such simpler plan elements to 
be executed in order.

Our focus is on the design of BMIs that can achieve the goal of 
these sequential motor plans. Planned sequential behavior is a fun-
damental motor process in which all targets of a movement sequence 
are planned ahead of its initiation. Hence, a BMI for performing such 
behavior would allow a person to plan a full motor sequence ahead 
of execution. For example, when picking up a cup and bringing it 
to one’s lips, a person normally formulates the complete motor plan 
before its execution, as opposed to planning and performing each of 

its elements individually and separately. Therefore, the objective of 
such a BMI would be to perform the sequential behavior by decoding 
all elements of the sequence concurrently and in advance of move-
ment, thus requiring the consideration of a concurrent architecture. 
This BMI functionality is distinct from that in prior BMIs that decode 
and execute individual single-targeted movements one by one and, 
hence, have a sequential BMI architecture1–18.

In addition to simultaneously decoding a motor sequence in 
advance, a concurrent architecture could also allow the BMI to con-
sider the overall motor goal of the task at a higher level. This is a result 
of the BMI having information about all the motor-plan elements at 
once and in advance of execution. Hence, one prospective BMI capa-
bility would be to consider all elements of the sequence concurrently, 
before action, to determine ways to perform the task more effectively. 
For example, the BMI might determine a way to accomplish the task 
more quickly or more efficiently (within any physical constraints that 
might exist). Alternatively, on the basis of additional sensor inputs, the 
BMI might determine that the planned sequence of movements would 
result in an accident with an obstacle and thus modify the execution 
of the task to avoid such an accident (see Discussion).

The development of BMIs that can perform and potentially execute 
sequential motor function more effectively in this way will require 
substantial technological innovations. But as a key initial step, it is 
necessary to consider a concurrent BMI architecture in which the 
elements of a planned motor task are decoded in parallel (at once), 
which is in contrast to the serial process of a sequential BMI. Hence, 
the feasibility of such BMIs hinges on the degree to which the elements 
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Although brain-machine interfaces (BMIs) have focused largely on performing single-targeted movements, many natural tasks 
involve planning a complete sequence of such movements before execution. For these tasks, a BMI that can concurrently decode 
the full planned sequence before its execution may also consider the higher-level goal of the task to reformulate and perform it 
more effectively. Using population-wide modeling, we discovered two distinct subpopulations of neurons in the rhesus monkey 
premotor cortex that allow two planned targets of a sequential movement to be simultaneously held in working memory without 
degradation. Such marked stability occurred because each subpopulation encoded either only currently held or only newly added 
target information irrespective of the exact sequence. On the basis of these findings, we developed a BMI that concurrently 
decodes a full motor sequence in advance of movement and can then accurately execute it as desired.
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of a motor-plan sequence can, in fact, be 
decoded concurrently. This was the starting 
point for our research.

Prior work has demonstrated that individual 
neurons in the premotor cortex of primates 
have selective responses to planned single-
targeted movements before their initiation 
and that such responses often remain sus-
tained during working memory until movement execution19–26. Such 
responses have been successfully exploited in the design of BMIs for 
single-target tasks15,16,18. In comparison, the neural encoding of tasks 
requiring a full sequence of planned targeted movements to be for-
mulated before execution is less well understood, and the design of 
real-time BMIs that can concurrently decode and then execute such 
sequential motor plans remains unexplored. Prior work has shown 
that an individual neuron can have a response that is selective to one 
or more elements of a sequential motor plan27–41 (see Discussion). 
However, little is known regarding how information about multiple 
elements of a sequential motor plan (for example, the planned targets 
of a sequential movement) is simultaneously distributed across the 
whole premotor population during working memory and whether 
these plan elements can be accurately decoded from the neural popu-
lation in a concurrent manner. More importantly, it is necessary to 
determine whether adding information about the elements of the 
motor plan, in sequence, to working memory affects the integrity of 
information about the plan elements that are already held and how 
it affects their neural encoding. In addition, it is necessary to assess 
robustness: whether a BMI that is limited to recording from relatively 
small numbers of neurons is able to achieve sufficient and consistent 
decoding accuracy.

We found that sequential motor plans can be decoded simulta-
neously, accurately, robustly and in advance of movement from the 

neural activity in the premotor cortex of monkeys. In addition, our 
results reveal a remarkably structured encoding mechanism that is 
used by the premotor populations for these sequential plans and that, 
in turn, allows for their accurate and concurrent decoding. On the 
basis of these findings, we developed and implemented a real-time 
BMI that can concurrently decode a dual sequence of motor targets 
and then execute them as desired.

RESULTS
We trained two adult male rhesus monkeys to perform a task in which 
two targets were presented in sequence on a computer display. Each of 
the targets could randomly take on one of four possible spatial locations 
(up, down, left or right). Repeated locations were precluded, so there 
were a total of 12 possible combinations (sequences) of two consecu-
tive distinct target locations. After a blank-screen variable delay, a ‘go’ 
cue appeared that directed the monkeys to sequentially move a cursor 
from the center of the screen to each of the two remembered targets in 
order (referred to as a dual-target task; Fig. 1). We defined the working  
memory period as the 500-ms blank-screen interval after the presentation 
of the second target and before the earliest possible ‘go’ cue. Therefore, 
the task here was a working-memory task in which the monkeys were 
required to serially add to working memory two randomly selected target 
locations in each trial and then simultaneously retain them in working  
memory before execution (Fig. 1a).
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Figure 1  Task design and experimental setup. 
(a) Schematic illustration of a standard  
dual-target task over a single trial. Task events  
and their timings are shown over a single trial 
from left to right. The right end, in which the 
second movement is depicted, is truncated 
to conserve space. Decoding analyses are 
performed during the 500-ms blank-screen 
interval after presentation of the second target. 
(b) Experimental setup for the standard  
training sessions. (c) Experimental setup for  
the BMI sessions. I/O, input/output.

Figure 2  Population decoding accuracy for a selected session.  
(a) Population decoding accuracy over time for the first target (red curve), 
second target (blue curve) and full sequence (black curve). Each point 
on the curves indicates the decoding accuracy for the population over 
the preceding 500-ms window. The time at zero is aligned to the start 
of first target presentation. The pink and blue vertical bars indicate 
the times during which the first and second targets were presented, 
respectively. The left and right vertical dashed black lines indicate 
the mean times at which the first and second go cues were given, 
respectively. The arrowhead indicates the time point of decoding for the 
preceding working memory period (0–500 ms from the end of the second 
target presentation). The dotted lines indicate the 99% chance upper 
confidence bounds for the first target, second target and sequence (out of 
12 possibilities), with the same respective color scheme used above (see 
also Supplementary Modeling). (b) Number of cells sufficient to reach 
the decoding accuracy asymptote during the working memory period for the same session. The first target (red curve), second target (blue curve) and 
sequence (black curve) accuracies are shown as a function of the cumulative number of cells in descending order of single-cell sequence accuracy.  
The number of cells needed to reach over 90% of the population accuracy is indicated by the vertical dashed line.
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We recorded multiple-unit responses from the premotor cortex 
as the primates performed this task. Specifically, we recorded 281 
well-isolated single neurons from the supplementary motor area 
and dorsal premotor cortex (PMd) over 11 sessions for an average 
of 26 ± 6 cells (mean ± s.d.) per recording session (note that some of 
these cells may not be distinct across the different sessions). We fit-
ted inhomogeneous Poisson models to each neuron’s spiking activity  
using an expectation-maximization algorithm42 (Online Methods 
and Supplementary Modeling). We used these models and a maxi-
mum-likelihood decoder to quantify the probabilities that groups of 
neurons could correctly identify the first and second targets on a trial-
by-trial basis during the working memory period (using a leave-one-
out cross-validation; Online Methods). We used decoding accuracy as 
our measure of the amount of information encoded by a population 
of neurons about each target. Specifically, for an individual (first or 
second) target, we measured the percentage of trials in which the 
maximum-likelihood decoder correctly predicted the respective tar-
get from that population’s activity. Likewise, we measured the amount 
of information encoded about the full sequence as the percentage of 
trials in which both targets were correctly decoded.

Accurate, robust, and concurrent encoding of the sequence
We found that neural population activity within the premotor cortex 
accurately encoded the location of both targets during the working 
memory period. During this period, the population correctly encoded 
the first and second targets in 85% and 82% of the trials in the session 
with the highest encoding accuracies, respectively. When considering 
all 12 possible target combinations, the population encoded both tar-
gets correctly in 72% of the trials in this session, which included a total 
of 285 dual-target trials (Fig. 2a). Across all sessions tested, the popula-
tion correctly encoded the first and second targets, on average, in 76 ±  
11% (mean ± s.d.) and 56 ± 17% of trials, respectively, both of which 
are significantly above the percentage expected by chance (one-sided  
Z test, P < 10−15; Supplementary Fig. 1a). Also, the population encoded 
both targets correctly on average on 45 ± 12% of the trials across all 
sessions, which was also far higher than expected by chance at 1/12 or 
~8% (one-sided Z test, P < 10−15). These results were consistent across 
the two monkeys (P < 10−15 for both; Supplementary Fig. 2).

This accurate encoding of the motor sequence was also robust. Only 
a small number of cells were needed to decode the target sequence 
with high accuracy. When performing the decoding analysis over all 
trials, which used all 12 possible target combinations, only 29% of 
the population (7.5 cells) was needed, on average, to achieve higher 
than 90% of the population sequence accuracy (Fig. 2b and Online 
Methods). When performing the decoding analysis over subsets of 
all trials that used only four or eight target combinations, population 

sequence accuracies in the best session were as high as 93% and 80%, 
respectively. In these trials, decoding from only two and four cells, 
respectively, was sufficient to achieve higher than 90% of these popu-
lation sequence accuracies.

Real-time concurrent BMI for sequential movement execution
Motivated by the observation that both targets can be concurrently 
and accurately decoded from the responses of relatively few neurons 
in the premotor cortex, we developed a real-time BMI that was  
capable of predicting both targets simultaneously before the  
monkey’s motor response and then executing the targeted move-
ments. In the associated experiments, we recorded a mean of 20 ± 2  
cells per session from the premotor cortex of the same monkeys 
described above. We fitted Poisson models to the neural population 
activity during the working memory period before the go cue (Online 
Methods and Supplementary Fig. 1b) as the primates rehearsed 
a subset of target combinations that included either four or eight  
possible sequences over an average of 26 ± 2 (mean ± s.d.) training 
trials per sequence (Fig. 1b). We chose to use either four or eight 
sequences in the BMI experiments to obtain sufficient training and 
real-time trials per session.

Using the Poisson models, the sequence decoding accuracies for the 
set of four and eight sequences in these training sessions (found using 
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Figure 3  Decoding accuracies in BMI trials. The gray bars indicate 
the monkeys’ average behavioral accuracy, maximum-likelihood cross-
validation accuracy on the training data and real-time BMI accuracy,  
with the corresponding s.e.m. shown. The black bars indicate chance  
level accuracies. Performances using four sequences are shown on the 
left, and performances using eight sequences are shown on the right.

a b c dBehavioral execution time Decoding time, 12 sequences Decoding time, 8 sequences Decoding time, 4 sequences

N
um

be
r 

of
 s

es
si

on
s 5

4

3

2

1

0

N
um

be
r 

of
 s

es
si

on
s 5

4

3

2

1

0

20
0

30
0

40
0

50
0

60
0

Time (ms)

70
0

80
0

90
0

1,
00

0
20

0
30

0
40

0
50

0
60

0

Time (ms)

70
0

80
0

90
0

1,
00

0

N
um

be
r 

of
 s

es
si

on
s 5

4

3

2

1

0

20
0

30
0

40
0

50
0

60
0

Time (ms)

70
0

80
0

90
0

1,
00

0

N
um

be
r 

of
 s

es
si

on
s 5

4

3

2

1

0

20
0

30
0

40
0

50
0

60
0

Time (ms)

70
0

80
0

90
0

1,
00

0

Figure 4  Decoding and behavioral performance times. (a) Histogram of the total times it took the monkeys to behaviorally react to the two go cues and 
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©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

�	 advance online publication  nature NEUROSCIENCE

a r t ic  l e s

leave-one-out cross-validation) were 79 ± 2% and 80 ± 3% (mean ± 
s.e.m.; one-sided Z test, P < 10−15), respectively. After training, the pri-
mates performed the same task as before but with the cursor now being 
sequentially positioned by the BMI on the targets decoded from the 
recorded neuronal activity during the single preceding working mem-
ory period (Fig. 1c and Online Methods). We set the BMI-generated  
cursor movements to occur immediately after the presentation of 
the go cue and selected the added delays to match the reaction times 
that the monkeys normally experienced when moving the cursor  
themselves after the go cue (note that cursor movements could be 
generated without the added delays, if desired).

Both monkeys performed a total of 459 trials on the four-sequence 
set, and one of the monkeys performed 110 trials on the eight-sequence 

set using the real-time BMI. The sequence accuracies for the set of 
four and eight sequences were 72 ± 2% and 71 ± 4%, respectively, 
both of which were significantly above the percentages expected by 
chance (mean ± s.e.m.; one-sided Z test, P < 10−15). Both the training 
and real-time BMI accuracies were similar and significantly above 
those expected by chance across the two monkeys (one-sided Z test, 
P < 10−15 for both.) (For the four sequence sets, the first monkey had 
a BMI accuracy of 69 ± 3% and a training session accuracy of 77 ± 2%, 
and the second monkey had a BMI accuracy of 75 ± 3% and a train-
ing session accuracy of 82 ± 2%). Sequence accuracies using the BMI 
were also close to the cross-validated sequence accuracies during the 
training sessions when taking into account the primates’ natural error 
rates during the standard task (Fig. 3). In fact, the 95% confidence 
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bounds for the two accuracies overlapped (72 ± 4% and 73 ± 3%, and 
71 ± 8% and 66 ± 6% for the sets of four and eight sequences, respec-
tively; Online Methods). These results established that two planned 
elements (the two intended sequential targets of movement) could be 
simultaneously predicted in advance of movement and then executed 
by a real-time BMI with high accuracy.

We also examined the time required by the concurrent decoder to 
decode the sequence. We found that the sequence decoding accuracy 
for the set of 4, 8 and 12 sequences reached 90% of the maximum 
asymptotic accuracy possible, on average, 488 ± 135 ms, 561 ± 119 ms  
and 641 ± 121 ms, respectively, after the initial presentation of the  
second target (Fig. 4). When performing the motor sequence, 
the minimum total time it took for the monkeys to both react to  
the two go cues and reach the two targets was, on average, 791 ± 93 ms  
(the sum of the two reaction times plus the two center-to-target  
movement times; Fig. 4).

Population encoding reveals a new partitioning mechanism
Observing that both target locations could be accurately and concur-
rently predicted from the neural population responses, we further 
examined the spatial and temporal structure of their encoding. In 
particular, we investigated how neurons within the premotor cortex 
were able to add new information about the second target to working 
memory without compromising the integrity of information about the 
first target that was already being held. To do so, we used a decoding 
approach that measures the amount of information held about the 
identity of each planned target in the sequence by considering all 
sequence combinations collectively.

We found that most cells encoded significant information about 
only the first (currently held) or only the second (newly added) target  
during the working memory period (one-sided Z test, P < 0.01). 
Moreover, this partitioning was present across all target locations 
and sequences (meaning that responses were not sequence specific) 
and remained stable throughout all recordings per day. Of the 281 
neurons recorded in all sessions, 46% had a target accuracy that was 
significantly higher than expected by chance for at least one of the 
two targets during the working memory period (one-sided Z test,  
P < 0.01). Of these, 68% encoded significant information about only the 
first currently held target (Supplementary Fig. 3), and 23% encoded 
significant information about only the second added target (one-sided 
Z test, P < 0.01; Fig. 5). The percentage of cells that encoded signifi-
cant information about both targets was only 9% (one-sided Z test,  
P < 0.01; note that we performed a Bonferroni correction for multiple 
comparisons for all comparisons; Supplementary Fig. 4), and even 
among these cells, most had target accuracies that were much closer to 
that of one of the two subpopulations of cells that significantly encoded 
only one target (Fig. 6 and Supplementary Fig. 5). These results 
revealed a highly significant divergence in the amount of information 
encoded by the two subpopulations of neurons about the two targets 
(random permutation test, P < 10−15; Supplementary Modeling and 
Supplementary Fig. 6). Moreover, we examined the relation between 
the activity of each of the two subpopulations to upcoming motor 
behavior and found that each subpopulation was only predictive of 
whether the first or second upcoming movement would be performed 
correctly or incorrectly (that is, resulting in a behavioral error) by the 
primates after the go cue (one-sided Z test, P < 10−15).

These results demonstrate that during the working memory period, 
most neurons were not selective to a specific sequence or simply a  
spatial location. Rather, they were partitioned into two disjoint 
subpopulations, one encoding only the identity of the currently 
held (first) target and one encoding only the identity of the newly 

added (second) target within the sequence, regardless of the specific 
sequence (see Supplementary Fig. 7 for a comparison to sequence-
specific selectivity found in prior works28–31,41,43).

The observed partitioning during working memory was not related 
to limb movement or simple visual-related responses. No visual cues 
were presented during the working memory period, and any move-
ment before the go cue terminated the trial. This lack of relationship 
was also suggested by the partitioning mechanism itself, because if 
the activity was the result of targeted limb movement, then all cells 
would only reflect the direction of this single target. In addition, 
the electromyography activity during the working memory period 
was not predictive of the first movement direction (one-sided Z test,  
P = 0.14) but was predictive of this direction during the first move-
ment period after the go cue (one-sided Z test, P = 0.01). In an addi-
tional set of analyses, we also found that encoding of the second target 
was not conditioned on the location of the first target and vice versa 
(Supplementary Fig. 8).

Effect of adding information to working memory
To further examine how adding a new target to working memory 
affected the integrity of the currently held target, we disambiguated 
the process of holding information in working memory from that 
of adding information to it. We obtained the results from sessions 
in which the monkeys performed the standard dual-target trials  
(as before) but also performed single-target trials, in a randomly 
interleaved fashion (Online Methods). Unlike in dual-target trials,  
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significance of the target accuracies was tested here at the α = 0.01 level 
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both targets. The inset indicates the proportion of cells that encoded 
significant information about only the first, only the second or both 
targets during the working memory period with the same color scheme as 
described above.
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in single-target trials only the first target was presented, and the second 
target presentation period was replaced with a blank-screen period of 
the same duration. The task timing was otherwise unchanged com-
pared to the dual-target task.

We found that adding information about the second target loca-
tion to working memory did not incur loss of information about the 
first target location. Of the cells that encoded significant informa-
tion about the first target during working memory in single-target 
trials (one-sided Z test, P < 0.01), most (74%) provided the same 
level of accuracy in decoding the first target during working memory 
in dual-target trials despite the addition of a second target (χ2 test,  
P > 0.05). Moreover, for the whole population, there was no significant 
difference in first target accuracy during the working memory 
period when comparing dual-target and single-target trials across 
sessions (Wilcoxon signed-rank test, P = 0.69; Fig. 7). These results 
demonstrate that the subpopulation encoding the first target and the 
responses of that subpopulation remained largely unchanged when 
the second target was added to working memory, and therefore the 
addition of information about the second target did not comprise 
the integrity of information already held about the first target. It is 
important to emphasize here that this task involved serially adding to 
working memory two randomly selected target locations in each trial 
and then simultaneously holding them in working memory before 
execution. Such a task is distinct from memory-guided tasks in which 
the same motor sequence is repeatedly performed from memory after 
learning and visually guided tasks in which movements are serially 
cued and executed one by one29–31,41,43.

In a control analysis, we also examined whether neuronal encod-
ing of the first target was affected by the number of targets presented 
per trial in a single session (one target compared to two sequentially 
presented targets) by having one monkey perform only single-target 
trials. Comparing these single-target–only sessions with sessions in 
which we interleaved single-target trials with dual-target trials on the 
same day, we found no significant difference between the population 

decoding accuracies of the first target in single-target trials between 
the two session types (χ2 test, P > 0.15; Supplementary Fig. 9).

Finally, although implicit in the preceding results, it should be 
emphasized that as the pair of presented target locations varied 
over the hundreds of trials typical of a given day’s session, most 
neurons remained dedicated to encoding only the first (currently 
held) or second (added) target. For the two subpopulations of cells 
that encoded significant information about the first or second targets 
alone, most (89%) provided substantially the same level of accuracy 
in decoding their respective targets in the first and second halves of 
the recording session (χ2 test, P > 0.05; the sessions included 263 ± 
36 (mean ± s.d.) dual-target trials on average). Also, the sequence 
decoding accuracy (across all 12 sequences) of the entire population 
did not change over time between the first and second halves of the 
sessions (Wilcoxon signed-rank test, P = 0.37). Therefore, the parti-
tioned premotor subpopulations seemed to be physiologically dedi-
cated to encoding either the first or second target added to working 
memory. Inherently, the neural decoding in our BMI exploited this 
stability of the two constituent subpopulations to achieve sustain-
able performance.

DISCUSSION
The purpose of the present study was to examine how multiple planned 
targets of sequential movement are concurrently encoded as a popu-
lation by premotor neurons during working memory and determine 
whether the activity recorded simultaneously from multiple single 
neurons can be used to concurrently and accurately decode the com-
plete motor-plan sequence in advance of movement and in real time. 
We used three methodological approaches to investigate these ques-
tions. First, we simultaneously recorded the activity of multiple cells 
across the whole premotor population. Second, we used an interleaved 
dual-target and single-target task to dissociate the dynamic process 
of maintaining target-related information in working memory from 
that of adding new information to it. Third, we used a maximum-
likelihood decoding approach that allowed us to define an accuracy 
measure for the amount of information that is concurrently encoded 
about planned motor sequences and examine the spatiotemporal  
distribution of information across the whole population.

A neural partitioning mechanism
Our results reveal a new functional structure within the premotor 
cortex that allowed for accurate and concurrent decoding of two 
planned motor targets across multiple spatial locations. We found 
that during working memory, premotor populations are partitioned 
largely into two fundamentally disjoint subpopulations of cells: one 
dedicated to encoding only the currently held (first) target and one 
dedicated to encoding only the newly added (second) target, irre-
spective of the specific sequence. Moreover, although the two target 
locations changed from trial to trial, the two encoding subpopula-
tions did not. Notably, the subpopulation dedicated to encoding the 
first target and the responses of that subpopulation remained largely 
unchanged when the second target was added to working memory, 
and therefore the process of adding information did not compromise 
the integrity of the existing information (across all target locations). 
Also, only a small number of neurons was sufficient to accurately 
predict the location of both targets, making the decoding of such 
information highly robust.

Prior work has shown that individual premotor neurons have selec-
tive responses to single-targeted movements before their initiation19–26.  
It has also been shown that PMd neurons can be selective to the 
location of multiple target choices for a single-targeted movement 
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Figure 7  The effect of adding information to working memory. In an 
interleaved session, the population decoding accuracy for the first target 
in dual-target trials is shown in red, and the population decoding accuracy 
for the first target in single-target trials is shown in magenta. Each point 
on the curves indicates the decoding accuracy over the preceding 500-ms 
window. Dotted curves indicate the 95% confidence bounds for accuracy 
of each curve (rather than chance level). The vertical pink bar indicates 
the time during which the first target was presented. The vertical blue 
bar indicates the time during which the second target was or was not 
shown depending on the trial type. The arrowhead indicates the time point 
corresponding to the decoding accuracy of the preceding working memory 
period (data are presented as in Fig. 2).
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before a final selection is made44 or can represent combined infor-
mation about the target and the body part to be used for a single- 
targeted movement45–47. When performing a planned sequential 
movement, prior studies have demonstrated that individual neurons 
within areas such as the parietal, premotor or prefrontal cortex can 
have selective responses to a sequential motor plan27–41,43,48. Some 
neurons (often a relatively small fraction) show increased activity for 
a specific combination of movements (for example, a push followed 
by a pull of a manipulandum) during a preceding delay, suggesting 
that they encode information about more than one motor-plan ele-
ment at a time28–31,37,41,43. Other cells have also been found to have 
selective responses during movement itself, with increased activity 
before performing a particular movement (for example, a push) only 
when it follows another specific movement (for example, a pull) in 
sequence29,31,43, or before a movement only if it has a particular order 
in the sequence31,43. What has remained unclear, however, is how 
information about individual elements of such sequential plans is 
simultaneously distributed across the whole population during work-
ing memory and whether and how the process of adding new infor-
mation about an element to working memory affects the integrity of 
information already held and its neural encoding.

Although a major focus of this study was to investigate the encod-
ing structure of premotor populations during the working memory 
period, we found that, consistent with prior studies29,31,43, neurons 
often altered the degree to which they encoded information about the 
two targets across different time points during the task. Some cells, for 
example, encoded no information about the second target during the 
working memory period but encoded significant information about 
the second target during the second movement itself (Supplementary 
Fig. 5a). Such shifts in activity may reflect the dynamic role premotor 
neurons have in processing, maintaining and then executing motor 
plans in combination with other motor cortical areas.

Another question arising from the study is how information 
encoded by premotor neurons is related to the later execution of the 
sequential task. We found that the subpopulation of cells that predom-
inantly encoded information about the first target was only predictive 
of whether the primates would perform the first upcoming movement 
correctly or incorrectly, and this was similarly true for the second 
subpopulation. This therefore suggests that the ‘partitioning strategy’ 
revealed here was ultimately used to direct upcoming sequential motor 
behavior. In terms of the small number of cells that encoded informa-
tion about both targets, it is interesting to speculate whether they may 
provide an important ‘bridge’ between distinct motor-plan elements 
or a higher conceptual representation of specific motor combinations 
not provided by the other subpopulations of neurons.

A concurrent BMI for planned sequential motor behavior
We exploited the simultaneous encoding and neural partitioning 
mechanism observed in these experiments to develop a new BMI 
functionality for the performance of planned sequential motor behav-
ior. This is a fundamental behavior in which all targets of a movement 
sequence are planned ahead of its initiation and is largely distinct from 
behaviors involving the performance of independent single-targeted 
movements. The BMI functionality takes advantage of the concurrent 
encoding of a sequential motor plan in the premotor cortex, allowing 
it to determine all elements of the sequence simultaneously, upfront 
and in advance of movement.

In addition, because the full motor plan is simultaneously decoded 
upfront and in advance of movement, the higher-level goal of the 
task can, in principle, also be analyzed before execution, and the 
motor plan can be reformulated accordingly. This could allow for 

the prospective design of BMIs that can perform a sequential motor 
task more effectively, for example, more quickly, more flexibly or more 
efficiently than originally conceived. Such a BMI may, for example,  
alter the order in which the elements of the motor sequence are 
executed depending on rapid or unpredictable changes in the  
environment (for example, to avoid unanticipated obstacles) or  
correct the original sequence on the basis of the performance metrics 
of the task (for example, proactively changing a sequence of letters  
on the basis of spelling rules). As a simple but illustrative example of 
such a prospective capability (in the context of our experiments and 
using a relatively small number of recorded neurons), we demonstrate 
that we could accurately decode the full sequence of two targets in a 
very short time period after target presentation (Figs. 3 and 4). Taken 
together, we demonstrate a concurrent BMI that allows for the per-
formance of a sequential motor behavior that is in line with how it is 
naturally planned and executed. Moreover, because information about 
all elements of the sequence is known ahead of execution, considering 
such concurrent decoding provides the future prospect of designing 
BMIs that can perform such tasks more effectively.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Behavioral tasks. Two adult rhesus monkeys (Macaca mulatta) were trained to 
perform a working memory sequential delayed motor task. Monkeys were first 
sequentially presented with two distinct target locations on a screen, which were 
randomly selected in each trial, and then had to move a cursor to each in order 
using a joystick (dual-target task; Fig. 1a). After an initial presentation of a blank 
screen, two targets were sequentially presented, each of which could randomly 
take on one of four possible spatial locations: up, down, right or left. To ensure 
that the two target locations were distinct, the motor sequence was chosen at 
random from a total of 12 possible sequences such that all possible combina-
tions of the two target locations, excluding the ones with repeated locations, were 
shown. Targets were displayed for 500 ms each and were interleaved by a 300-ms 
interval during which a blank screen was shown. After the end of second target 
presentation, there was an additional blank screen variable delay of 550–850 ms 
(the working memory period), after which the first go cue signal appeared. After 
this, the monkeys were required to move a cursor from the center of the screen 
to the first remembered target. After reaching the target, they were required 
to return the joystick to the center and then wait for a second go cue to appear 
after an additional 500-ms delay interval. Once the second go cue appeared, the 
monkeys were allowed to move the cursor from the center of the screen to the 
second remembered target. They received a juice reward if they correctly moved 
to the two instructed targets.

Dual-target and single-target tasks. To examine the effect of adding information 
about a new target to working memory, it was necessary to disambiguate the pro
cess of holding information in working memory from that of adding information 
to it. To do this, primates performed randomly interleaved dual-target and single-
target trials in a subset of sessions. In the dual-target trials, described above, the 
primates were sequentially presented with two targets and then a blank screen 
delay. The time delay from the end of the first target presentation to the first go 
cue was therefore 1,350–1,650 ms. In the single-target trials, in comparison, the 
primates were presented with only the first target and had to keep this single 
target in working memory for the same total 1,350- to 1,650-ms time duration as 
in the dual-target trials. However, they were not presented with a second target 
and only shown a blank screen until the go cue.

Neurophysiologic recordings. All procedures were performed under Institutional 
Animal Care and Use Committee–approved guidelines and were approved by the 
Massachusetts General Hospital institutional review board. Before the record-
ings, multiple (up to six) planar silicone multielectrode arrays (NeuroNexus 
Technologies Inc., MI) were surgically implanted in each monkey. Each of the 
implanted arrays contained four shanks horizontally spaced 400 µm apart. Every 
shank was 4 mm long and contained eight electrode contacts, each vertically 
spaced 200 µm apart for a total of 32 contacts per electrode array. Hence, the 
electrode contacts themselves spanned the bottom 1.6 mm of the shank. We 
advanced the electrodes approximately 2 mm in depth. The electrode arrays 
were inserted into the cortex manually using microscope magnification. A crani-
otomy was placed over the premotor cortex under stereotactic guidance (David 
Kopf Instruments, CA). The multielectrode arrays were separately implanted 
into the PMd and supplementary motor areas (Supplementary Fig. 10). The 
electrode lead of each array was secured to the skull and attached to female con-
nectors with the aid of titanium miniscrews and dental acrylic. Confirmation of 
the electrode positions was done in both monkeys by direct visual inspection of 
the sulcal and gyral pattern through the craniotomy. Additional postmortem 
confirmation of the electrode positions was made in one monkey (the second 
monkey is still performing experiments). Recordings began 2 weeks after surgi-
cal recovery. A Plexon multichannel acquisition processor was used to amplify 
and band-pass filter the neuronal signals (150 Hz to 8 kHz; one-pole low cut and 
three-pole high cut with 1,000× gain; Plexon Inc., TX). Shielded cabling carried 
the signals from the electrode array to a set of six 16-channel amplifiers. Signals 
were then digitized at 40 kHz and processed to extract action potentials in real 
time by the Plexon workstation. Classification of the action potential waveforms 
was performed using template matching and principle component analysis on 
the basis of waveform parameters. Only single, well-isolated units with identifi-
able waveform shapes and adequate refractory periods (less than 1% of spikes 
within a 1-ms interval) were used for the online experiments and offline analysis.  
No multiunit activity was used.

Model construction. For the analysis of standard recording sessions, we mod-
eled the activity of each neuron under any given sequence as an inhomogeneous 
Poisson process whose likelihood function is given by49,50 
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where ∆ is the time increment taken to be small enough to contain at most 
one spike, Nk

c is the binary spike event of the cth neuron in the time interval 
[( ) , ]k k−1 ∆ ∆ , λc(k|Si) is its instantaneous firing rate in that interval, Si is the ith 
sequence, and K is the total number of bins in a duration K∆. We took ∆ = 5 ms as 
the bin width of the spikes. By building the neuronal models under each sequence 
separately in the dual-target task, we avoided making any a priori assumptions 
about whether the cells encode individual targets or combined sequences. For 
each sequence and neuron, we needed to estimate the firing rate λc(k|Si) using the 
neuronal data observed. To do so, we used a state-space approach using the expec-
tation-maximization algorithm42,51,52 (Supplementary Modeling). After fitting 
the models, we validated them using the χ2 goodness-of-fit test on the data42 and 
confirmed that they fitted the data well (P > 0.7 for all cells in all sessions).

Maximum-likelihood decoder. Once the models were fitted, a maximum- 
likelihood decoder was used to decode the intended sequence on the basis of the 
neuronal activity in any period of interest. A maximum-likelihood decoder is the 
optimal decoder in the sense of maximizing accuracy (the percentage of trials in 
which the combined sequence is decoded correctly when the sequences are equally 
likely to be presented, as was the case in our experiments). The decoder finds the 
likelihood of observing the population neuronal data under each sequence and 
selects the sequence with the highest likelihood as its prediction. Using the like-
lihood model in (1) and assuming that neurons are conditionally independent 
given the sequence, the population likelihood under any sequence is given by 
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where K is the total number of bins in any period of interest during the trial, 
C is the total number of neurons, and λc(k|Si) for k=1,…,K and c=1,…,C is the 
estimate of the firing rate. The predicted sequence, Ŝ, is thus given by 

ˆ arg max ( | ):
:S =
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iK

C

i

p N S1
1

To find the sequence decoding accuracy of a single cell, the maximum- 
likelihood decoder uses only that cell’s spiking activity to decode the sequence 
(Fig. 5 and Supplementary Fig. 5). The decoder also outputs the posterior  
probability of each sequence, which is the probability that it is the correct one 
after the neuronal observations: 

p S N N S
N S

ip
pi

i

i
K
C K

C

K
C

i

( | ) |
|

,( )
( )

,:
: :

:

:
:1

1 1
1

1
1 1 12= =

∑


To dissociate the decoding accuracy of the first and second targets, denoted by 
T1 and T2, the decoder also outputs their predictions on the basis of the neuronal 
activity. To do so, the decoder finds their posterior probabilities, p T l N K

C( | ):
:

1 1 1
1=  

and p T l N K
C( | ):
:

2 2 1
1= , for all possible spatial locations, l1 and l2, by summing over 

the posterior probability of the sequences that have these spatial locations as their 
first or second targets. The decoder then picks the spatial location with the highest 
first target posterior (that is equivalent in our design to picking the first target 
location that maximizes the population likelihood) as its first target prediction 
and similarly does so for the second target.

Comparison of the first-target decoding accuracies in the single-target and 
dual-target trials. To find the first-target decoding accuracy in the single-
target trials, we modeled the activity of each neuron under any given single 
target location as an inhomogeneous Poisson process, which was fitted using 
the expectation-maximization procedure. We then performed the maximum-
likelihood decoding analysis using leave-one-out cross-validation on the single-
target trials. To make the comparison, for the dual-target trials we constructed 

(1)(1)
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two models, one for the first target and one for the second target, and then per-
formed the decoding analysis for each target separately.

Determining the number of cells required to achieve the population accuracy. 
We found the number of cells required to achieve a given percentage of the popu-
lation accuracy by first sorting them in each session on the basis of their single 
neuron sequence accuracies and then performing the decoding analysis in that 
session for different number of cells in descending order.

BMI model training. In each BMI recording session, the monkeys first per-
formed the dual-target task using a joystick (training session) during which mod-
els were constructed for the neuronal activity during an 800-ms time window 
before presentation of the go cue. This window length was chosen because in the 
standard dual-target sessions it was sufficient to achieve better than 95% of the 
(maximum) sequence accuracy possible when using the entire window start-
ing from second target presentation until the go cue (Supplementary Fig. 1b). 
We modeled the activity of each neuron in this window under any sequence as 
a homogeneous Poisson process (point process with constant rate) instead of 
an inhomogeneous process to make the model construction faster for the BMI 
experiments. Hence, using (1), the likelihood function for the spiking activity of 
neuron c under any of the sequences, Si, was modeled as49,50 
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where λc(Si) denotes the fitted firing rate of that neuron in the 800-ms window 
for sequence Si, and K = 800/∆ is the total number of bins in this period with bin 
width ∆ = 5 ms. The firing rates were fitted using maximum-likelihood parameter 
estimation. The task involved either four (both monkeys) or eight (monkey P) 
sequences. The four-sequence task consisted of either up-right, up-left, down-
right, down-left or left-up, left-down, right-up, right-down. The eight-sequence 
task consisted of the union of the sequences in the two four-sequence tasks.

The training sessions were followed by the real-time BMI sessions in which 
these trained Poisson models were used to predict the sequence using the  
maximum-likelihood decoder.

Concurrent online predictions and movement execution in the BMI. After the 
training sessions, the monkeys performed the same task as before. However, this 
time cursor position was controlled by target predictions made by the maximum- 
likelihood decoder rather than the joystick. During the real-time BMI experi-
ments, individual spike timings of all cells within the population were continuously 
recorded at a 40-kHz resolution by the Plexon multichannel acquisition processor. 
Each recorded spike was then transmitted through an ethernet port to a separate 
computer running a Matlab routine in real time. For each real-time trial, the Matlab 
routine then used the maximum-likelihood decoder to calculate the likelihood of 
the population spiking activity during the 800-ms time window before the go cue, 
N K

C
1
1
:
: , under each sequence, Si. This likelihood was calculated on the basis of the 

trained Poisson models and assuming neurons were independent conditioned on the 
sequence. Hence, the population likelihood for each sequence was found as 
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The maximum-likelihood decoder then outputted the sequence under which the 
population likelihood was maximized as the decoded sequence.

On the basis of the sequence decoded, a second Matlab routine running on 
the same computer then activated an analog output channel on the National 
Instruments Data Acquisition Input/Output (NI DAQ I/O) interface to go from 
0 V to either +5 V or −5V for 500 ms. The voltage line was connected to a second 
NI DAQ I/O input channel located on a third computer running the behavioral 
program. Depending on the voltage received, the cursor displayed in the middle 
of the screen moved in a straight line to one of the four possible target locations 
(for example, +5 V in I/O channel 1 corresponded to a cursor location within 
the top target). This process then repeated for the second decoded target after 
another artificially introduced time delay. The time delays in the two gener-
ated movements were selected to be similar to those that the monkeys normally 
experienced when performing the standard task using a joystick. However, the 
NI DAQ could, in principle, generate the two movements in as little as a few 
milliseconds apart.

Behavior and prediction errors. Because the primates did not perform the 
dual-target working memory task with 100% behavioral accuracy, some of the 
BMI errors were caused by behavioral errors (for example, the monkey not 
remembering the correct sequence during working memory) as opposed to 
decoder errors. Hence, a more relevant accuracy number for the performance 
of the BMI could be the sequence accuracy obtained during the training session 
using leave-one-out cross-validation. This is because in the cross-validation 
analysis, we calculated the accuracy by comparing the decoded sequence with 
the sequence the monkeys actually selected after the go cue. For the BMI ses-
sions, however, we compared the decoded sequence to the instructed sequence 
to find the accuracy. We therefore tested whether, after taking into account the 
primates’ natural error rates, the accuracy during training sessions would be 
close to the BMI accuracy. Denoting the behavioral accuracy of the monkeys 
by Pb and the decoder accuracy found from the training session by Pt, we can 
calculate what the accuracy of selecting the instructed sequence would be after 
taking into account the behavioral errors. Denoting the resulting accuracy by 
Pf, we have that 

P P P P P
Sf b t b t= + − − ×

−
( )( )1 1 1

1

In other words, when the monkey and the decoder are both correct, the 
instructed sequence is selected. However, if the monkey is incorrect and 
the decoder is also incorrect in decoding the monkey’s intended sequence,  
the probability of the decoder selecting the correct instructed sequence by 
random chance is 1/(S−1). We can find the mean and s.e.m. of Pf from those 
of Pb and Pt, assuming Pb and Pt are independent53, and then compare it with 
the BMI accuracy.
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